Another in our occasional series demystifying Latin American banking trojans

Ousaban is a Latin American banking trojan active exclusively in Brazil. ESET has been tracking this malware family since 2018. In common with most other LATAM banking trojans, Ousaban uses overlay windows to steal credentials and more from financial institutions. However, unlike most other LATAM banking trojans, Ousaban’s developers have extended the use of overlay windows to steal credentials from popular regional email services. In this installment of our series, we examine its main features and many connections to other Latin American banking trojan families.


Ousaban is written in Delphi, as are the vast majority of the other Latin American banking trojans ESET is tracking. And, as do many of them, Ousaban shows signs of active and continuous development.

The name ESET assigned to this family is a portmanteau of two words – “ousadia”, which means “boldness” in Portuguese, and “banking trojan”. The reason for such a name is that for a very long time, Ousaban was distributed alongside the images (some of them obscene) shown in Figure 1. In the most recent campaigns distributing Ousaban, this is no longer the case.

Figure 1. Various images distributed alongside the Ousaban banking trojan

Ousaban is also known as Javali, a name assigned by Kaspersky. A recent article about Ousaban can be found here. ESET has also been able to attribute Ousaban to the campaigns described in this blogpost from 2018. Even though some sources claim Ousaban is active in Europe, ESET has never observed any campaign spreading this banking trojan outside of Brazil.

Ousaban protects its executables with either Themida or Enigma binary obfuscators. Additionally, most EXEs are enlarged, using binary padding, to approximately 400 MB, likely in order to evade detection and automated processing.

Most recent Ousaban variants contain a string table to hold their strings, storing this table in their .rsrc sections. One of the resources contains a zlib-compressed list of strings delimited by newline characters.

Its backdoor capabilities are very similar to a typical Latin American banking trojan – simulating mouse and keyboard actions and logging keystrokes. The latest variants communicate with C&C servers using RealThinClient – a protocol also used by Grandoreiro.

The typical Latin American banking trojan attacks users of financial institutions using overlay windows crafted specifically for its targets and Ousaban is no exception. Interestingly though, its targets include several email services that it has overlay windows ready for as well, as illustrated in Figure 2.

Figure 2. Overlay window design for the UOL email service

To achieve persistence, Ousaban either creates a LNK file or a simple VBS loader in the startup folder, or it modifies the Windows registry Run key.

Distribution and execution

Ousaban is distributed mainly through phishing emails (such as the one in Figure 3). The threat actor behind Ousaban cycles through multiple distribution chains. These chains share some common characteristics, mainly:

  • DLL side-loading is used to execute a binary payload
  • CAB archives are sometimes used instead of ZIP
  • A configuration file distributed inside an archive with one stage is required by the next stage
  • An injector, unique to Ousaban, may be used

Figure 3. Recent spam email distributing Ousaban (a rough translation is provided on the right)

MSI with JavaScript

This distribution chain, illustrated in Figure 4, is quite straightforward. The victim is misled into executing an MSI attached to the phishing email. When executed, the MSI launches an embedded JavaScript downloader that downloads a ZIP archive and extracts its contents. It then executes the legitimate application, which side-loads the Ousaban banking trojan.

Figure 4. Simple Ousaban distribution chain

Multistage MSI

Recently, ESET has observed a new distribution chain spreading Ousaban massively. It is much more complicated than the one described above. The whole process is illustrated in Figure 5.

The first two stages are almost identical. In both, the core of the stage is contained in an archive (ZIP or CAB) and contains:

  • A legitimate application
  • An encrypted injector
  • An encrypted downloader
  • An encrypted configuration file
  • Legitimate files

The legitimate application, when executed, side-loads the injector. The injector locates, decrypts and executes the downloader. The downloader decrypts the configuration file to obtain a URL leading to a remote configuration. The remote configuration contains a URL leading to the next stage archive. The downloader downloads the next stage archive, extracts its contents and executes the legitimate application.

The final stage is slightly different, as it decrypts and executes the actual Ousaban banking trojan instead of a downloader. The third configuration file leads to a remote configuration with C&C server IP address and port. The archive with the last stage contains one more malware-related file – a support module that alters various settings of the victim’s machine. Finally, the archives for all three stages include additional files – a single legitimate executable in the first-stage archive, 14 legitimate files in the second-stage archive, and 13 legitimate files in the third-stage archive plus an embedded archive containing a further 102 legitimate files.

Figure 5. Ousaban’s complex distribution chain

Support module

Ousaban loads this module to make it easier for the threat actor to connect to the victim’s machine. It mainly:

  • Modifies the RDP settings to use RDPWrap, a utility to allow multiple RDP connections to Home editions of the Windows OS
  • Modifies firewall settings to allow all RDP connections
  • Creates a new account with administrative privileges

The module contains the RDPWrap binaries stored in its .rsrc section. It then changes the RDP settings directly in the Windows registry at:

  • HKLMSYSTEMCurrentControlSetServicesTermService
  • HKLMSYSTEMCurrentControlSetControlTerminal Server

The module then uses netsh.exe to modify the Windows firewall to allow all TCP and UDP traffic directed to port 3389, the standard port for RDP. Finally, it creates a new account Administrat0r with administrative privileges. We hypothesize that the threat actor wants to have a second way to access the victim’s machine; the threat actor is then not limited by the capabilities of the Ousaban banking trojan and can perform any malicious activity.


Ousaban utilizes three cryptographic schemes overall. Its strings are encrypted with an algorithm used by the vast majority of Latin American banking trojans we have analyzed (we have previously described it in detail here). All communications between Ousaban and its C&C server are encrypted using the standard AES cipher with a hardcoded key.

The final algorithm is used in the previously mentioned injector specific to this family. We provide a Python implementation in Figure 6.

Figure 6. Algorithm used by Ousaban’s injector to decrypt its payloads

Remote configuration

Ousaban relies on remote configuration to obtain its next stage URLs and the C&C address and port to use. Ousaban used to store its remote configuration on YouTube, similar to Casbaneiro, but lately it has started using Google Docs instead.

The remote configuration is in JSON format with the values being encrypted by the same algorithm used for strings, but with a different key. The fields have the following meaning:

  • host = C&C domain
  • link = next stage URL
  • porta = C&C port or 0 (the default HTTP port 80 is then used)
  • vers = Ousaban version

Examples of the remote configuration are provided in Figure 7 and Figure 8.

Figure 7. Ousaban remote configuration on YouTube

Figure 8. Ousaban remote configuration on Google Docs

Similarities with other LATAM banking trojans

We have already mentioned some similarities between Ousaban and other Latin American banking trojans previously analyzed in this series (like the same string decryption algorithm). During our analysis, we discovered additional links to the other families, mainly:

  • Some Ousaban downloaders contain the same string obfuscation code as Amavaldo
  • Ousaban has been distributed by the same malicious advertisements as Mispadu in the past
  • The JavaScript files it uses are similar to Vadokrist, Mekotio, Casbaneiro and Guildma
  • The PowerShell files it occasionally uses for distribution (aside from the recent methods described in this blogpost) are similar to Amavaldo, Casbaneiro and Mekotio

We analyzed the interestingly close cooperation between these malware families in depth in our white paper presented at the Virus Bulletin 2020 conference.


In this installment of our series, we looked at Ousaban, a Latin American banking trojan targeting only Brazil. This malware family has been active since at least 2018 and shares typical characteristics of this type of threat – it is written in Delphi, contains backdoor functionality and attacks using overlay windows.

We have covered its most typical features, distribution and execution methods and the structure of its remote configuration. We also discovered several leads that suggest Ousaban is linked to some other Latin American banking trojans.

For any inquiries, contact us at [email protected]. Indicators of Compromise can also be found in our GitHub repository.

Indicators of Compromise (IoCs)


SHA-1 Description ESET detection name
C52BC5B0BDFC7D4C60DF60E88835E3145F7FB34F Ousaban banking trojan Win32/Spy.Ousaban.G
D04ACFAF74861DDC3B12E75658863DA65C03013F Ousaban JS downloader JS/TrojanDownloader.Banload.AAP
9A6A4BF3B6E974E367982E5395702AFF8684D500 Ousaban JS downloader JS/TrojanDownloader.Banload.AAP
3E8A0B6400F2D02B6B8CD917C279EA1388494182 Ousaban MSI downloader Win32/Spy.Ousaban.W
6946BFB8A519FED8EC8C30D9A56619F4E2525BEA Ousaban injector Win32/Spy.Ousaban.W
E5DD2355E85B90D2D648B96C90676604A5C3AE48 Ousaban support module Win32/Spy.Ousaban.AB

Abused legitimate applications

Example SHA-1 EXE name DLL name
BA5493B08354AEE85151B7BBD15150A1C3F03D1D Avira.SystrayStartTrigger.exe Avira.OE.NativeCore.dll
7F6C820B00FC8C628E2420C388BBB9096A547DAA AudioGrabber.exe StarBurn.dll
C5D5CF1B591C40344B20370C5EE5275356D312EC PlGen.exe bass_fx.dll
53045B8047CED049BBC7EBCB3D3299D2C465E8B9 BlazeDVD.exe SkinScrollBar.dll
A6118D354D512DC29965E368F6C78AA3A42A27AD ImageGrabber.exe StarBurn.dll
F9C71277CF05738275261D60A9E938CBA7232E0D nvsmartmaxapp.exe nvsmartmax.dll

Recent configuration file URLs[.]com/document/d/1o9MlOhxIJq9tMOuUHJiw2eprQ-BGCA_ERnbF54dZ25w/edit[.]com/document/d/1nQqifeYFsCcI7m-L1Y1oErkp50c-y670nfk7NTKOztg/edit[.]com/document/d/13A6EBLMOOdvSL3u6IfyrPWbYREXNRVdDTiKzC6ZQx7U/edit[.]com/document/d/1UiuqrzI_rrtsJQHqeSkp0sexhwU_VSje8AwS-U6KBPk/edit[.]com/document/d/1VKxF3yKbwQZive-ZPCA4dAU1zOnZutJxY2XZA0YHa3M/edit[.]com/document/d/19bXTaiFdY5iUqUWXl92Js7i9RoZSLJqcECgpp_4Kda4/edit[.]com/document/d/1DDDmJzBVcNWhuj8JMRUVb7JlrVZ5kYBugR_INSS96No/edit[.]com/document/d/1UbfOcHm-T9GCPiitqDRh5TNwZRNJ8_miEpLW-2ypU-I/edit[.]com/document/d/1d1903AvDBYgOo0Pt9xBBnpCHwSerOpIi4l1b6M4mbT4/edit[.]com/document/d/1JLuJKoxcd0vRqut8UeBjFJXzMDQ9OiY2ItoVIRq6Gw8/edit[.]com/document/d/1EOwVDlYPV3gE7PSnLZvuTgUQXvOSN9alyN5aMw7bGeI/edit[.]com/document/d/18sc6rZjk529iYF2iBTsmuNXvqDqTBSH45DhSZpuLv_U/edit

MITRE ATT&CK techniques

Note: This table was built using version 8 of the MITRE ATT&CK framework.

Tactic ID Name Description
Resource Development T1583.001 Acquire Infrastructure: Domains Ousaban operators register domains to be used as C&C servers.
T1587.001 Develop Capabilities: Malware Ousaban is operated by the same group that develops it.
Initial Access T1566.001 Phishing: Spearphishing Attachment Ousaban’s initial downloader is most commonly distributed as a spam attachment.
Execution T1059.001 Command and Scripting Interpreter: PowerShell Ousaban uses PowerShell in some distribution chains.
T1059.003 Command and Scripting Interpreter: Windows Command Shell Ousaban uses the cmd.exe to execute the legitimate applications that side-load the main Ousaban payload.
T1059.007 Command and Scripting Interpreter: JavaScript/JScript Ousaban uses JavaScript in some distribution chains.
T1204.002 User Execution: Malicious File Ousaban relies on the victim to execute the distributed MSI file.
Persistence T1098 Account Manipulation Ousaban registers a new local administrator account on the victim’s machine.
T1547.001 Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder Ousaban achieves persistence using the Run key or startup folder.
Defense Evasion T1140 Deobfuscate/Decode Files or Information Ousaban payloads and strings are encrypted.
T1574.002 Hijack Execution Flow: DLL Side-Loading Ousaban is often executed by this technique.
T1562.001 Impair Defenses: Disable or Modify Tools Ousaban modifies the RDP settings of the victim’s machine.
T1562.004 Impair Defenses: Disable or Modify System Firewall Ousaban modifies Windows firewall settings.
T1027.001 Obfuscated Files or Information: Binary Padding Ousaban frequently uses binary padding.
T1027.002 Obfuscated Files or Information: Software Packing Ousaban binaries are protected by Themida or Enigma packers.
T1218.007 Signed Binary Proxy Execution: Msiexec Ousaban uses the MSI format for execution.
Credential Access T1056.001 Input Capture: Keylogging Ousaban can capture keystrokes.
Discovery T1010 Application Window Discovery Ousaban looks for bank- and email-related windows based on their window names and titles.
T1518.001 Software Discovery: Security Software Discovery Ousaban collects information about the security software installed on the victim’s machine.
T1082 System Information Discovery Ousaban collects basic information about the victim’s machine, such as computer name and Windows version.
T1113 Screen Capture Ousaban can take screenshots.
Command and Control T1132.002 Data Encoding: Non-Standard Encoding Ousaban uses RealThinClient that provides non-standard encryption.
T1219 Remote Access Software Ousaban installs RDPWrap on the victim’s machine.
Exfiltration T1041 Exfiltration Over C2 Channel Ousaban exfiltrates data via C&C server.